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Abstract 

 

Carbon anodes are an integral component of the molten salt electrolysis for primary 

aluminium production. Raw materials for anode production are suffering a reduction in quality 

and the aluminium world faces competition from lithium-ion batteries. The knowledge and 

improved process control in anode manufacturing has increased, where now anodes are 

manufactured to a better quality than 40 years ago. Despite the improved quality of the anodes, 

the problem of carbon particles mixed into the electrolyte (also known as carbon dust) is still 

prevalent. The usual recommendation in operations in smelters is: "Get better anodes and the 

problem will take care of itself". This summary of PhD thesis aims to investigate carbon particles 

and their distribution in industrial electrolyte taken from cells in the TRIMET Hamburg smelter. 

 

An electrolyte sample containing carbon particles was analysed using STEM-EDS. The particles 

have an increased sodium content on the surface, which indicates sodium intercalation. Analysing 

the results of the industrial sampling at 600 positions, cells did not reveal fundamental patterns of 

carbon distribution. Modelling using PCR was able to explain a maximum of 19.1 % variance in 

the average carbon concentration. No mechanism was found to be acting on the distribution – in 

contrasts to other components in the electrolyte. 

 

The analysis of frozen electrolyte samples taken under newly changed anodes within eight hours 

shows layered structures of the frozen bath. Many of the samples contained carbon particles. The 

size of the particles depended on whether the anode change was carried out using a scoop to clean 

the surface of the open electrolyte. Fine carbon particles remained in most cases. The formation 

of spikes, which damage the process, could not be detected in any of the anode changes observed 

within the first eight hours. 

 

Overall, the methods and analysis conducted in this study did not show common particle patterns. 

The carbon particle distribution can be random. 

 

Keywords: Carbon dust, Microstructure, Carbon distribution in bath, PCR, STEM-EDS. 

 

1. Introduction 

 

The use of carbon anodes in the primary production of aluminium has been the status quo since 

the inception of the process itself. While the overall demand for aluminium is growing, the 

primary production is hampered by its direct and indirect CO2 emissions, which are contrasting 

the use in the green transformation. While today the CO2 scope 2 footprint of aluminium ranges 

between four and 16.5 t CO2-e/t Al [1-3], the reduction with green energy will only go so far. In 

the end, the process of carbon oxidation in the production is still relevant, until the inert anode is 

successfully integrated on a large scale, or an alternative process has been industrialized. 

However, the oxidation and consumption of carbon is both intentional and - due to side reactions - 

unintentional.  
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1.1 Carbon Reactivity in Electrolysis Cells 

 

Carbon particles can be found in the electrolyte. The definition of carbon dust was published by 

the author elsewhere [4]: 

 

“Carbon dust refers to small carbon particles, which are located in the electrolyte of an aluminium 

reduction cell [5-7]. Older sources refer to carbon slough [8] or carbon foam [9], which refers to 

a mixture of carbon particles of various sizes within the electrolyte in an aluminium reduction 

cell.” 

 

Carbon dusting can be considered unintentional carbon consumption. It occurs due to various 

processes within the electrolysis process. The main ones are the reactivity of anodes with air or 

CO2. Figure 1 shows an anode with the temperature zones and the areas of air and CO2 reactivity.  

 

 
Figure 1. Anode sketch with zones of O2 and CO2 reactivity. The temperature scale shows 

the increasing temperature of the anode from top to bottom. Bottom surface profile of 

anode is exaggerated. With a temperature between 550 – 600 °C air reactivity starts, when 

air is available (arrow left of the word Air). This part can be, depending on the cell design, 

operation and time in the anode cycle, above anode cover material, which is supposed to 

seal the anode from air access. A: anode rod, B: Anode Cover Material, C: Bath Crust, D: 

Electrolyte, E: CO2 bubbles, F: Aluminium. Recreated from Fischer and Perruchoud [10]. 

 

The rate and amount of CO2 reactivity are temperature dependent and influenced by the anode 

properties [10-11]. Polished butts (used anodes) cores were investigated at 10x magnification. 

Sadler et al. showed a higher rate of sub-surface carboxy attack on the sides of anodes, when 

compared to the working surface [12]. Engvoll et al. supported the finding by analysing samples 

over the height of an anode after use [13]. Both groups stated that CO2 can move through porosity 

for up to 50 mm and oxidize the binder phase of the anode. These “pre-reacted” parts are 

consumed on the working surface, as protruding particles are consumed preferential [12-13]. The 

importance of porosity as an indicator for anode quality was highlighted by Galisiu et al., who 

proposed the ratio of large porosity (pore diameter > 7.5 μm) by total porosity as a proxy for 

anode quality. There was a strong correlation between the porosity ratio and anode performance 

[14]. 
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The cost of a carbon dusting crisis is estimated at 80 $ per tonne aluminium [46]. At 14 MWh per 

tonne, the EBITDA per tonne could calculate to 140 – 800 $ [88]. These numbers show the 

financial urgency to resolve a dusting crisis. 

 

6. Summary 

 

The presented work set out to investigate the origin and distribution of carbon particles in 

industrial aluminium reduction cells.  

- The carbon particles found in the samples ranged from 2 μm to 30 mm, revealing the 

range of the problem. While larger particles can be removed with cavity cleaning, fine 

particles have to agglomerate before attempting removal. 

- It was not possible to distinguish the origin of carbon particles (anode or cathode carbon) 

with the applied methods and the limited number of samples. However, it was possible 

to visualise carbon and alumina particles within a cryolite matrix. 

- The fundamental transporting mechanism for the particles has not been found and no 

underlying distribution pattern could be found. The models could only explain up to 

19.08 % of the variation. 

- The theoretical mechanism of sodium intercalation and wettability were combined with 

the particle sizes found to identify particles, which float in the electrolyte or rise to the 

surface due to relative density.  

 

With todays published knowledge, the use of carbon anodes will likely continue for at least 15 

years, even if the inert anode research has been pushed by projects like ELYSIS or Arctus 

Aluminium [89-90]. Anode problems can still hinder progress and capacity creep, even in modern 

smelters [91-92]. Today, carbon consumption is the biggest contributor of direct carbon emissions 

from our industry. To fulfill prosperity and a green transition in the energy sector, demand for 

aluminium will only grow in the coming years [93-94].  

 

Creating a common understanding for processes and materials instead of playing a blame game 

between carbon plants and electrolysis departments can help to mitigate the effects of non-optimal 

anodes in a smelter without heading into a crisis. 
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